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Abstract -A ncw retincd hut simple shcar dcformati,'n thcory of elastic shells is dcvel,'pcd li'r shclls
lanllnatcd of orth"tropic laycrs. To cvalu'ltc thc ncw displaccmcnt ticlll assumcd which IS justilicd
in plat,·s from thc threc-dimcnsi"nal elasticity theory. elassic typcs "I' shallow shells arc cunsidcrcd.
Thc houndary valuc prohlem is formulatcd hy making usc "I' thc principle of virtual powcr in
conJunction with the assumcd consistent displ'lCement lield. The thcory accounts 1"'1' Cllsinc dis­
tnhutlOn "f thc tranS\crse shear strains through thickness of the shcll and tangcntlal stress-frce
hound.lry ClHldilions on thc houndary surfaccs "I' the shell. The thcory aLso ,ICC"llllts for In-plane
incrtia and [(Ita tory incrtia. The Navicr typc nal'l solutions arc prescnted in statics and in vihrations
till' cyhndrical and spherical shells under simply supported ed.,:e h,'umbry conditions. Thc theory
IS of thc samc order "f clllnpk,\lly as the shear dclilrmation theory hut is very much more ellicient
without nccding shcilr correction factors. Some numerical COlnPilnSOnS With other works MC made.

I. I NTROIH J('TlON

The more general slructural dements are any curved structures which extend continuously
to a much greater extent in two dimensions (i.e. on a curved surface) than in the third
dimension (i.e. the thickness direction). The structural dCIIH.:nts are very uscl'ul in engin­
ccring design. npt'Cilll/r Jilr t!l(' si::il/,t/ (II' structur('s lIl/d Jilr dl'l'('/(I/lil/,t/ fil/it(' ('{('/I/('I/ts. A
shell may have any of a great variety of geometric configurations. Practical shell structures
onen have various kinds of discontinuitics, such as holt:s, hosses, changes in thickm:ss and
stifkners. Usually, composite-material shells are laminates of many plies or layers.

Because of dilliculties involved in deriving two-dimensional theories of shells from
three-dimensional equations of elasticity, assumptions of one kind or another must be
introduced in the derivation, So, approximate bidimensional linear theories for shells have
heen devdoped by making use of an assumed displacement fidd in powers of the thickness
coordinate and a variational theorem. An integration with respect to the thickness coor­
dinate supplies the governing differential equations and consistent boundary conditions in
terms of unknown generalized coordinates which arc independent of the thickness coor­
dinate. An asymptotic integration of thc elasticity cquations has been employed for isotropic
shells, Goldenveizer (1%3) and for nonhomogeneous shells Widera and Logan (19S0), To
derive two-dimensional theories from three-dimensional equations, a method has been
presented by Cheng (1977) by expanding solutions in Taylor series.

Surveys of various classical shdl theories can be found in the works of Naghdi (1971).
Bert and Francis (1974) and Bert (1980). Classical shell theories were developed originally
for thin elastic shells. based on the Kirchhoff· Love plate's assumptions and various degrees
of approximation on the curvatures. except the Langhaar and Boresi (1958) theory which
is exact in terms of the KirchhofT--Love hypothesis, These classical shell theories arc those
of Donnell ( 1933), Morley (1959), Love's first approximation, Love (1927), Sanders (1959),
Novozhilov (19M). Love's second approximation. and Fliigge (1960). For a more detailed
discussion of these various shell theories. the reader is referred to Naghdi (1971).

From Koiter (1959). refinements to Love's first approximation theory of thin elastic
shells are not sutlicient, except if the effects of transverse shear and normal stresses are
taken into account in the refined theory. Then, the transverse normal stress is of the order:
thickness to radius of curvature ratio times the bending stresses, whereas the transverse
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shear stresses dedul:ed from equilibnum equations are of the order: thickness to length
along the side of the shell times the bending stresses. Reddy and Liu (1985),

The etfel:ts of transverse shear and normal stresses in shells were considered by Reissner
( 1952) for shdls l)f re\ OIUtll1n. :":aghdi ( 1957) to arbitrarily doubly curved shells and Dong
and Tso (1972l. A very good synthesis in dynamics has been made by Greenspon (1960)
for homogeneous shdls.

Higher-order shell theories in which a displacement field of polynomial form. a degree
greater than one is assumed. have been developed for cylindrical shells by Whitney and Sun
(197'+) and by Bhimaraddi (198'+). for doubly curved shallow shells by Reddy and Liu
(1985). and for general shells by Doxsee ( 1989) for the purpose of removing the inaccuracies
in the laminated shells of the shear deformation theory which accounts only for constant
transverse shear stresses thrl1ugh thickness, In addition. the shear correction f~lCtors which
the shear defl)ffnation theory needs. are not consistent.

In this paper. a ncH' tl'{'e ot approach is proposed for developing a simple and refined
shear-deformation theory for moderately thick laminated shells. The theory contains the
same independent generalized displacements as in the shear deformation theory. and is
based on a new assumed displacement field in which the shear is represented by a sine
function, This means isjustitled from a three-dimensional point of view in plates and allows
us to have a cosine distribution of transverse shear stresses through the thickness of the
shell. Also, unlike some of the shear deformation theories. the present analysis docs not
involve the determination of any unknown shear coemcients. The model is evaluated by
comparing the results ohtained from it. as well as from shear deformation theory Reddy
(19X4a). and higher-lHdcr shear deformation theories (Reddy and Liu. 19R5; Bhimaraddi,
19X41. with, when p(lssihlc, the (unfortunatdy rare) exact three-dimensional results,
NUllH:ril.'al rcsults ;HC ohtained for 1;llllinall:d spherical domes, laminatt:d and isotropic
short cylindril.';t1sht:lls In static sUltt:S ;Ind in vihration. Tht: ohjective of this rt:st:arch is to
dt:n:lop c1licicnt (I.C, slluplc and aCClll',ltt:) tools for the design and the sizing of structures,
in linear and nonlinear hehaviour. and if necessary for structures made of composite
materials. So, a tinite dement approximation may he constructed using an ellicient theor­
etical mudd.

~. TilE SEW BASIC TWO·DIMESSIONAL MODEL

III prccious Iwrks oil structurallll('chaflics. ami \1'(//'(' prupll,(jatillll ill !)(Irs alld h('ams. it
has !WCII su,tJ.tJ{',\,tcd that tr(l/ollulllctric jiillctiulls he uscd ill the killematics (Touratier,
19XO. 19X7) in place of polynomial <.kvdopments of the transverse coordinates. Recently
(Touratier, 19X91. it was proposed that this idea be extended to the plate theory. Some
numerical results for: a simply-supported laminated plate under a doubly sinusoidal normal
statil.' pressure; a simply-suppllrted sandwidl plate under a uniform normal static pressure;
fundamental, free vibrati()[l mode of a simply-supported sandwich square plate, have been
carried out in comparison with three-dimensional exact solutions. The comparisons have
shown the etlif.:iency of the proposed mood through the accuracy of tht: numerical results
and the simplicity of the theory. A similar approach was used by Stein (19g6) for plates,
sec the review article by Redoy (I990).

To explain the hasic model, we start with plates under a normal loading such as
pressure. com:entrawlloao for instance. Let us consider a body occupying the domain

n = A x [ - h(2 ~ ; ~ hl21

in a Cartesian coordinate system (,'(I,X:.X, =;), with A as an arbitrary region in the
(x I' xz) plane. and with diameter (A) » h. the thickness of the body n. To have only the
five classic independent generalized displacements. to immediately satisfy zero transverse
shear stress conditions on the top and bottom surfaces of the plate, and to have a higher
order and simple kinematic. we propose to write the variation of displacements (U I , U:, U ,)
through the thickness of the plate in the following form:
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:x=1 or (I)

where t is time. (II.. \1') are the displacements of a point in the middle of plane A and i'~ are
the transverse shear strains at :: = 0, The displacement field (I) implies that the transverse
shear strains are zero on surfaces:: = ±h,2. and are functions of the even kind of the
thickness coordinate ::. which is consistent. Because the sine function has an infinite radius
of convergence. from egn (1) we can write the in-plane displacements:

h' ( - l)P (n::):r ~ 1 I

Ux=lIx-::II'.x+~ L (''-+~I)'~} I';'
n r = (j -p , I

pE.I'

• J h

{,' _ II -\1' + _"Il n' _-'.,Il + . n _' .. Il n _-.," +' , ,
x - ,- - ,x -I x - 11} : - I' ~I}J - I' - 7-'}, - iX'_, / ::>, / , I

(2)

Since i':' = lUx + II', x where lU, are the rotations at :: = 0 of normals to the midplane A with
n:spel:t to the x, axes. we note:

(I) if i'~ = 0 we obtain the Kirchhotf·Love theory,
(2) if we develop the first order sine function. we ohtain the Mindlin theory.
(3) if we develop the sine function to the third order only, then the in-rbne kinematic

(2) is

( , II n - 1 II
\) x = /I, - '::11' , + '::i' x - L I .:: i', + ' , ,

, <1/'

whil:h is of the same order as the Levinson (llJXO) ami Reddy (llJX-lh) kinell1atil:. In fal:t,
the Levinson and Reddy in-plane kinell1atil:s is given hy

(, = /1 --[I) - -l(::):«(,) _'I' )J -II _-'I' +_..11_ -l _1 .. "
LJ, ,- I, 3 /z " ·,x - x -' ,x - I , 3/Z: - I"

In the Stein theory, eqn (I) is taken under the following form [whil:h is not equivalent to
eqn (I)] :

- n-
U = /I + -:'II"+sin ··-'u", x /z x /z x·

n::
U 1 = lI'+cos Iz II".

So, with the Stein theory. boundary conditions are not satisfied for the shear stresses on
the top and bottom surfaces of the plate. and the theory involves eight independent
generalized displal:emen ts,

To develop our theory. we will. of l:ourse. keep the sine funl:tion intal:t. In t~tct. the
kinematic proposed in (I) can be justified from the three-dimensional point of view by using
the eXl:ellent work of Cheng (1979). Cheng has presented a method for the solution of
three-dimensional elasticity equations for the problem of thick plates. Through this method
three governing differential equations. the well-known biharmonic equation V:V:II' = - q! D
(V: is the Laplacian. D the bending rigidity and q is the transverse load). a shear equation
(V:-(2p+ 1):n:/h:)s(xI.x:) = 0 (s is a shear function) and a transcendental equation
(I /V:)( I - sin (lIV)/IzV) If (x I. x:) = 0 (II is a stress funl:tion) are dedul:ed direl:tly and sys­
tematically from Navier's equations. Only the third equation involves a transverse normal
stress without shear. but the solution contains higher-order derivatives, The second eq uation
is called the shear equation because its solution is related to the pure shear deformation in
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the benJin", uf thll.:k pbte~. S". frum Cheng (llJ7<)1. the sellution of the jhear eljuat!un I~

such that C =~in((~r'-II:::/ill:: C:=-jInII:{'~I):::Iz)'\i C1nd [,=0. Hence thc
she;,tr in our thcl'ry L';,tn be deduccd from the ;,tbu\e solutie)n by Impo~ing p = 0 and ,tlSel
(Iz ::):"1' \:: lit ::1:; = ... \ : t:\.jn (..'). Then. th.: modellJng ~'fthe sheCir In II) is conjlstenr
In ;,tddition, ke.:ping functil'n" :.~, in ':ljn (I) ;,tlkl\\j Uj tel lind th.: \lindlin'~ theory by
d.:\doping th.: ,inc llf the tirst Ilnkr and to fCll.:i1itate a tlnite ekment appnnimation. Otha
t.:rms in ( I ) art: membrane dispbcernents WIth II,. and Kin.:hhutf Lovt: bending It \\ hlCh is
cquivaknt tl) the tir't term elf tht: asymptotic e'(pan~ion in the thn:.:-dim.:n~ional elasticity
equations. The bending beam kin.:matics in plan.: l\:-x;1 can b.: dcduc.:d from (Il by
impl"ing II, = II and;-.' = I).:; and It b.:ing functilln (,fx: and time.

:\I)W w.: ,Ire guing to build the shell nWekl 1'1'110\\ ing a prcll:eJure similar to that
pn:~ented abl)\e fllf plate,. ,.\ shell Ill' constant thicknt:~~ Iz b clll1~idcrt:d. and the pl,ints of
thc ~hell and it-; hllund,lrv arL' deflllted by nand r. respectl\el\. The boundary of the ,hell
is the union Ill' the upper ~urface r"'TCr' thc Illwer ~urface C..,,,., and the edgc f;Ke, r.,.t~."

The ,et 1)1' p,lIn IS lying h;I1fway het\\ cen the uppcr and lowcr 'urfal.:e~ i~ ctlkd the l1lidsurral.:C
and IS dClwkd !'y ..I. The Ilutward unit vcctor normal to r is denoted II and the lllrt:r,cl.:til)n
of ..t and r... i, defwIL'd 'f.. In orlkr to ()htain numerical ~olutilln, tl' the gll\erning
equation, that we ;Irl' 1\' deri\e, it is nL'ce,sdry to express the equatil)nS Il1 Clllllpl1nent form.
Ll't I, 1.:;:-:) defwte thl' \'rtlwgondl prinClp,tI·curviline;lr c()ordinate~ (\\!' ,hell coordinates)
SUdl that the ~ ,- dlld _ ·-L·uneS arc lines of curvature pn the mldsurfal.:e ; = O. ~-curves afe
straight lines perpendlnr!;lr to the Surt~ICC : = O. The v;dues of the pnncip;11 radii pf
curvature "f thl' middle ~urLlc\: ;Ire denoted hy R, and R, Then, cune" or eonsUnt .\"1

coinl.:lde with nines \11' principal cun;ltuf\: I n: of the mld~urL10':. and Clines of C\\!lstant
\: L'oillclde \\nh cline" or pnllclp;t! curvature I !',. The dlst;lllL'e dl hetween points
II '" (~I' ~ " 0) ,llld 1" I, 1 f d.., I .:;. I- d -.: '. ()) Oil the Illlds II rLlcc is dctcrll1 ined h)

whefe "1., and "1.. an: the "lIfl';lI.;e IlH:tfil.:s SUdl that

or

In this expre~"ll)ll. 1'1, I' _ > 0) is a pOint or the surl';lce .. j uf the shell. :1.1 and "1.~ afC scalars
whieh arc functIons nf ['osi lion (~I. ~ ,. ()) 011 lhe rnidsurface. The four q U;ll1 tities x I. :I.:. R I'

R~ deline the sharc or the shcll and arc nnl indercndent. Thc distancc dS hetween points
p = (~I' ~" ~ ) and P' '00 (~, + d~ I' ..: ~ + d~:, ~ + d;) out of the midslirfacL' is given hy

(() )

where 1'1. !.: alld I., arc the Lall1~ I.:oellicicnts.

So. the p\lint p of the mid~urfacc c10scst t\l P is related to P via P "" p + ~n' (p) when: : is
the distance hetween points p and P. and II'(P) is the unit vCCtOf normal t\) tht: midsurrace
at p. Then tht: displact:rnellt tick! is takt:n under tht: fllilowillg form, from consilkrations
regarding the ahove platt: nwdd:

.., (Xi

In cqns (X). (C'" c" el) art: the displaet:ments along tlw (~,,:>:) c(lordinatcs; Ui .ii:-\i'·)
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are the displacements of a point on the middle surface and (~ and (~ are the shear strains
at ~ = O. This choice in eqn (8) is dictated by the same requirements as those in plates so
as to have an efficient model (i.e. simplicity and accuracy of the model), only five independent
generalized displacements. higher-order shear deformation to avoid shear correction
factors. and zero transverse shear stress on the upper and lower surfaces of the shell. In
fact. for general shells. shear strains are defined by [see Doxsee (1989)] :

With the present theory. from eqn (8) we have

For shallow shells for which h'Ra« I, the preceding shear strains become

1t(
")1' - cos .:;0
-'11: = h,II'

Then. zero shear-stress conditions on the upper and lower surfaces of shallow shells are
well satisfied. provided the shell material is not more than monoclinic.

I, TWo·DIMFNSIONAL BOUNDARY VALUE PROBLEM FOR SIIELLS

In this sedion a simple and relined theory of composite shells is developed. The shell
considered has a uniform thickness which is much smaller than the shell's radii of curva­
ture. The shell may be composed of a single material or several different materials bonded
togetlH.:r in Iaycrs. each layer having a constant thickness. Each layer may be isotropic
or orthotropic. The material properties arc assumed to be linearly elastic. A consistent
combination of displacements (essential boundary conditions), forces and moments (natu­
ral boundary conditions) arc specified along the edges of the shell. The displacement of
each point of the shell is taken to be small compared to the thickness.

The following problem is addressed: given the initial geometry of the shell, its material
properties. the presl.:ribed edge forl.:es and displacements; the displacements and stresses at
every point of the shell are required. The equilibrium equations and boundary conditions
arc derived via the prilKiple of virtual power, Germain (1986). Let n be a shell with tractions
F presl.:ribed along part of its boundary fa C f<~~< and displacements prescribed along the
other part f" c fcd~<' where the symbol c represents a subset. The upper and lower surfaces
of the shell are taken to be tr;ll:tion free.

To use the principle of virtual power to derive equilibrium equations and boundary
conditions. we start by defining two spaces J/I and 4i such that (fJ = I or 2):

h "}(essential boundary conditions), 1(0 = ~ sin 1l:h~ ,

),'/- __ {I~' _LII : .,11'1/1 +J'(")'~o ~ . "J I I
" U/I - 11/; - ., 'II. U, = II': (ii/s, i'),) E H (A) x H (A),

"1.:1 "1.11

(9)
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where H'(A) is a Sobolcv spa<.:c.
Th.e space 41 is the space of admissiqle displacements C defined in eqns (8) and the

space 1i is the space of virtual velocities C which must be considered at a fixed time. Th.e
principle of virtual power states that: find (II" Ii', 'm E 41 such that for everY(litJ , If·, i~~) E ii,
then we have (summation on i and) = 1.:;,3):

IptldJ'=
",0

(II)

To simplify, we shall write {II} in the corresponding form:

(II a)

where .;., is the virtual power of the inertial forces, .~ the virtual power of the internal forces
due to stresses, .;;" the virtual power of the volume forces and .;;, the virtual power of the
external contact forces.
.. In egn (II) (1 is the strsss tensor. D the virtual strain rate tensor, Ii the mass density,
o the acceleration vector (C' = (~cC tt~), and r the body forces. Virtual velocity measures,
I~.. lf·, I~~ have been defined by eqn (10). The tensor iJ is defined by Doxsee (19X9):

( 12)

where the superscript T denotes the transpose, V the gradient operator on three-dimensional
space, V the gradient operator on the midsurfaee, I the identity tensor on the midsurface,
b = - Vn' thecurvatun.: tensor of the midsurface, n' the unit vector normal to the midsurl~lce

at p and @ is the tensor product operator.
To obtain numeri<.:al results and to evaluate the theory without any other approxi­

mation such as tinite element approxim<ltion of eqn (9) to egn (II), we restrict the theory
to shells such as hi R. « I and with constant radius of curvatun.:. Then, from (12) and (10)
the virtual strain rates an.: in curvilinear coordinates (no summation on Ii = I or 2) :

( 13)

By combining cqns (9) (13), integrating eqn (II) [therefore (II a)1through the thickness,
and performing other algebraic manipulations, one obtains for the terms in (1Ia):

( 14)
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(15)

( 16)

( 17)

The new terms appearing in these eq uations are automatically defined as below (n = O. 1.2
and fJ = 1, 2) :

( 18)

[n eqns (14). (15) and (16). the integrals arc surface integrals over A and in eqn (17). the
integral is a line integral along the intersection of r and r o , which is denoted f(,. Also
appearing in eqn (15) arc the stress resultants

( IlJ)

where " and {I = I or 2. [n cqn (19), Nill arc the membrane generalized stresses, A(/, the
lirst tlt:xion and tors~on generalized stresses, M;'/I the higher-order flexion and torsion
generalized stresses, Q,.; the higher-order transverse shear generalized stresses. The body
force resultants ~re defined in eqn (16) from the definition of the virtual power of vplume
forces Y.I = Jur 0 dl' and taking into account (10) to define the virtual velocity O. The
pn:scribed traction resultants in Nn (17) are defined using the definition of the virtual
power of surface forces!), = JraF 0 da and the definition of the virtual velocity in egn (10).
Finally, in eqn (17), It'l~ is the normal derivative along the curve «(;', T" and T; are forces
prescribed along the edge of the shell. e" and Mf are moments prescribed along the edge
of the shell. In egn (16). '/ is the classic normal transverse charge to the shell, PP and nlll are
respectively surface forces and moments applied inside A.

Now it is sutlicient to apply the principle of virtual power to obtain the formulation
of the boundary value problem. Then, (II a) with egns (14)-( (7) and by making use of the
integration by parts. imply:

-for all (I~I/' It" -};:)E )Ii, the equilibrium equations in the midsurface A of the shell n:

f lu) ~ IVli;'I;' +p n _ 1
II = L.""- Ii' /,-

'/- I ~i'

or 2

or ..,. (20)
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---for dll (r~:I' If-. If ". }:;) E tiC!') c ii. the ndtural bounddry conditions at tht: edgt: '(, of
the midsurfdl:e A of tht: shell Q:

-
- L SJi- I1 ,+ T I =:: O.

_. I
If = I or

_['1'\1 =

L J/:llllill .\1, = 0
II" - I

-
L Allin + Cli == O. Ii == I

I

or

The shear forl:es Q: appear in the sel:ond equation (21) if the independent shear parameters
arc dill == j;! - If'ill : then. it is sullkient to add - '" I Q::'l; to the second membn of the
second equation in (21) and to rep!al:e r'''' by r'I"',

--from (9). instead of the natural boundary I:()nditions (21), we can pn.:scrihe the
displacelm:nt on the edge of the shell: these arc essential boundary conditions.

Then. for example. to study the glohal free edge clrects and traction edge clrects we need
natural houndar) conditions (21). To take into account presl:rthcd displacements. we must
usc essential boumlary conditilllls, fll eqns (20) and (21) we have noted frolll (Iol) and
(1Ia) :

(22)

In addition. in (21) III is the tangent unit vector to (6 and r is the curvilinear abscissa on 't,.

Equ.ttions (20) and (21) arc governing eqlwtions of the shell following lines ofcurvature
coordinates.

Finally. eljns (20d. (20!). (2Id. (21,), (21d arc those of the classical shell theory:
eqns (20d and (21.d an.: due to the shear deformation .

.. CONSTITUTIVE Lr\W, EXACT SOLUTIONS FOR CROSS-PLY LAMINATED SHELLS

Equations (20) arc valid for any anisotropic and linearly clastic materials. To have
exact solutions. materi.tls must be restricted to the ortholropic (Reddy. 19~"'b). Therefore.
the constitutive law for the kth lamina is recognized as

(23)

In equation (23). because of the orthotropie material. if ij = fl. 22. (( then k! = 11,22. ((
(with summation). and if ij = 2(, 1(. 12 then k! is respectively equal to 2(, l~, 11 \\iithout
summation. Other moduli C"kl arc zero.

The hypothesis (j~: =: 0 (the normal transverse stress is nl.:glccted) is standard for
moderately lhil.:k stnll,;tures and is justified, Di Sciuva (19X6). From (23) and the abovc
rcmarks the local constitutive law becomes
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0"1 1 C'llll C'II:: 0 0 0 ell

(1 :.:. C'II:':' C':.:.:.: 0 0 0 e~2

(1 :.; = 0 0 C :;:; 0 0 2e:.;

(1, I 0 0 0 C;I;I 0 2e;1

0"1 :. 0 0 0 0 C I : I :. 2el:

1409

(24)

where C:,liJi takes into account

(n (24). the strains e'l are computed in the same way as the virtual strain rates. but by using
the displacement field defined in (9). instead of the virtual velocity field. Then the strains
can be deduced from (13) by exchange of D into e and by omitting the hat from 17,. I~' and
..~H" .

From (24). of course. we have:

So. we can write the global constitutive law from (19). (24) and (13) (considering the above
remarks). We obtain

-the global membrane constitutive law:

N = c\V-~W+RY.

the global first bending and twisting constitutive law:

M = BV -DW+dY.

--the global higher-order bending and twisting constitutive law:

-the global transverse shear constitutive law:

Q=~T.

In these global constitutive laws. we have put

N r = {N1hN::.,Nd; M T = {M11,M1:.,Md

~l r = p.j II. At:.:., Atd; QT = {Q 2" Qd

(25)

(26)

(27)

(28)

{
ii lll Ii'

V' = .... +
(ll R l '

{

-o
yr = !'..!J..l.,

:II

(29)

These global constitutive equations explain the equilibrium eqns (20) for moderately thick
laminated shells with orthotropic materials.
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The ::;~ mmetrit: m<ltrit:es A. B. B. D. J. D and ,~ are defined by (xfl = 11.22. 12.66:
<I)I}; =:: ~..L 55I .

..1',1 = ,'"h.: C~:i d~:
"" -;f_

8'11 = ,-;,: ~C~li d~ ;
.; "

..., iT '\"

B,n = ,- .- f(~)C~n d~
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./ 'r_

-"" .... J, ~- I ,- C J-A';I',') = ., .I ~ 1/1-) ..,.

.... h _

(.30)

The material coemt:ients e" are deduced from (24) by the following convention:

From (30) and (25) (29). we remark:

(I) the c1a,sluil ,hell theory i, tkduced oy taking/(~) = O.
(2) the lirst-prdcr shcar «.leformation shclltheory is obtained when((() = ~.

Exat:t stllutipn, of the partial dilkn:ntial eqns (20) in arhitrary domains and for general
h\llllldary C\lnditiollS is not possihl..:. Ilowe\er. for simply-supported shells whose projection
in the Carte'lan\lx:-pl<tne is a n.:ctang1c (spherically curved dome) we can solve these
equations c,\;I\."\ly. pnl\l\led the l<tmination schcmc is of antisymmctric cross-ply or
symmetric nl),,-ply. lll'lholropic typc, I:.\acl soluliuns ;lrc also possibk with cross-ply
cylindrical shells as with cross-ply cylindrically curn:d p,llH:ls, So. tor a spherical domc,
thc hOUll\bry cunditions arc assumcd to hc of lhc form:

ii,(\,.O,1l == ii,(\,.h.f) == ii;(O.x> I) = i':(a.x;,1) = 0

11'(\I.O.tl = 1I'(x,.h.1) = 11'(0. x:. I) = 1I'(a.x;.I) =0

N;;(\,.O,I) = ,V;;(x,.h,t) = NII(O.x;.1l = ,V,I(iJ,X;,t) = 0

.\1;;('\1,0,1) = .\I;;(xI,h.l) = MII(O,X;,tl = M , I (iJ,.\';, t) =0

J/;;(\I,O.t) = J/;;(xhh,1) = ;\1 ,, (0,.\':-1) = ;\1 ,1(a,.\'> I) = 0

;~':(XI.().I) = i~'I'(XI,h,1) = 'i~(O,x;.t) = i~~«(J.X;,1) = 0 (3 I)

where a and h dcnote thc lengths along the XI- and x;-directions. respectively. In Cartesian
coordinates X,. we have from (~J. dx, = X, d~,. i = 1,2. Following the Navier solution
procedure and for harmonic vibrations. we assume the following solution form that satisfies
thc boundary conditions in eqn (31) and thc equilibrium cquations in eqn (20) whcn thc
external forces p, and coupks Ill, arc lero:

iil(~,.~,.rl = L O,:",cos;.",x , sin;'nx:cxp(iw"",l)
"1." - 1

li;(~ I. ~;. t) = L D.;", sin ;.,,, X I cos ;."x; exp (iw",nt)
ItrJr ... [

li(~ ,,~;, t) = I: I~",,, sin ;.",x , sin i."x; exp (iw",,,t)
tH,n - [

:7','(~,.~;.t) = L r-,;", cos i.", X I sini.,~\;exp(iw",nl)
111.n """"' 1

"'/1 I
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r.

q(~ I. ~2' t) = L Qm" sin ;'mXI sin ;,"X2 exp (iwm"t) (32)
m.n- I

where i'm = mnia. i," = nn/b (m and n are integers). and where C~n"'" Qm" are the ampli­
tudes: wm " the frequency of harmonic vibrations. Substituting eqn (32) into eqn (20). we
obtain an algebraic system in C~" ... , . f';'". for any integer m and n. Qm" being a data:

where

U~n = {C ~,n. C·,~n. Wmn. r,~",. r~,,:

Q~" = {O.O.Qm".O.O}

(33)

(34)

and where lS-"""I and Mlm") are (5 x 5) squared matrix. The symmetric matrix ~,,,,n, =
KI","I_w,;",M1mn) is given in the Appendix. Equation (33) can be solved for L,,,". for each
m and n.

The solution is then given by eqn (32). using a finite number of terms in the series: if
the load q is a doubly sinusoidal load. then only m = I and n = I. i.e. U 1 I is useful: if the
load is uniform. then we must retain sufficient terms in (32) to obtain the convergence of
the solution. For free vibration analysis. Qm" = 0 and eqn (33) can be expressed as an
eigenvalue equ'ltion in (I),;,n' For static bending analysis. eqn (33) is solved with W m" O.

For a cylindrical shell of XI axis. that is freely supported along its curved edges. only
the boundary conditions based on ii 2• li'(O..\·:-t). li'(a.x:-I). Nil' Mil. ;\1 11 , {~~ in eqn (31)
necd to be satisfied with (32) by taking i'm = fIIlt/a. i,,, = II/r whcre R is the radius of the
cylindrical shell. and so R 1 = T. R 2 = U. For a cylindrical pand simply supportcd on all
its edgcs. eqns (31) and (32) arc valid. and it is sullicient to take R I = -I') and Rc = R.

5, NUMERICAL RESULTS

The theory is evaluated through two sample problems. Numerical results from several
other problems obtained by Pegoraro (1992) in statics and by Bcakou (1991) in
dynamics. confirm the trend observed from the following problems.

5.1. Proh/e1l/ I : Si1l/ply-.mpporled {'fuss-ply spherical dume under sinusuidal static luad
The material properties are: EL 25 E r. Cn = n,5 Hr. C n = n.2 E r. VI.!' 0.25.

where E is the Young modulus. C the shear modulus. I' the Poisson ratio. L the longitudinal
fiber direction and T the transverse fiber direl:tion. Table Il:Ontains the non-dimensionalized
center detlection of various cross-ply shells under sinusoidal static load. Three lamination
schemes arc tested: (0/90 '). (O/90"jO') and (0 '190/90 /0 ), to represent antisymmetric
and symmetric cross-ply lamination schemes. Layers are of equal thickness.

For moderately thick spherical domes under a sinusoidal transverse static load and
with a symmetric cross-ply lamination. the higher-order Reddy -Liu theory (Reddy and Liu
1985), underpredicts the central del1ection when compared to the present theory (Table I).
We note the present theory is the nean:st to the three-dimensional solution (Pagano. 1970)
for plate under sinusoidal transverse load, For antisymmetric moderately thick cross-ply
spherical domes. the trend reverses. Results from the shear deformation theory are obtained
by Reddy (I 984a. b) with a shear correction factor equal to 56. The maximum difference
between the present analysis and the Reddy -Liu theory is of the order of one per cent.
for moderately thick shells. For thin shells. quasi-identical results are obtained both for
antisymmetric and symmetric laminations,

5.2. Problem 2: Free l'ihrations 01simply-supported short cylindrical isotropic and laminated
shells

Table 2 shows the nondimensionalized fundamental frequencies of cross-ply short
cylindrical shells. The material properties and the lamination schemes are the same as those
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Table I. Non-dimenslOnahzed center detkC!lons."· = (-~I(J 2.a 2lh'Er Q, ,a'IIO' of slmplv­
supported cross-ply laminated spherical domes under a sinusOidally distributed load (J f> = I.
R, = R, = R. Q" = 100 SI). Each layer has an equal thickness. (SDT shear deformation

theory)

Ra Theory
(090 )

a,h = 100 ah = 10
(0 90 0 )

ah = 100 a h = 10
(0 90 900 I

ah = 100 ah = 10

10

20

50

100

Reddy-Llu
Present
SDT

Reddy·Liu
Present
SDT

Reddy Liu
Present
SDT

Reddy Liu
Present
SDT

Reddy Llu
Present
SDT

Reddy tiu
Present
Exact-3D
SDT

1.1937
11937
1.19-t8

35733
35733
35760

7.1270
71235
7.1270

9.8692
9.8689
9.8717

10.-t..4
10.-1....
IOA4h

10651
10.h51

10653

II .166
II 1-t2
IIA29

11.896
11.868
12.123

12.094
12.065
12.309

12.150
12.121
12.362

12.158
12.129
12.370

12.161
12.132

12.37.1

1.0321
1.0321
10337

2.-I0'N
2.-1101
2.-IllN

3.6170
3.6137
.1.6150

-t.2071
4.2077
-t.2027

.. 3074
-t.30X I
-t3026

-t ..1-t20
-t.3-t27
-t.3" 7 0
-t3.1711

6.7688
6S 168
6.-t253

70325
7.0XM
662-17

71016
7.1566
h6756

7.1212
71765
6.6902

7.12-t0
7.1794
6.(,92.1

7.1250
7.180.1
7371~)

6(,')1')

1.02(>.1
1.02/:>-!
1.0279

2.-t02-1
2-1026
2A030

HI33
36137
361f4

-t2071
~.2077

-t.2015

-t.3082
... .1088
....1021

-t3-t30
-t.34.1h
·UX50
-t ..l.1I,X

6. n65
6S321
6.362.1

7.053h
7.1021}
6.5595

7.1237
7.17-t0
6.6099

7.1-136
71970
6.62-t..

7.I-tM
7.1970
6.h2(,"

7.1·.\74
7.1'IXO
7Al00
6.1,2XO

used in the problem discussed above. For moderately thick symmetric cross-ply cylindrical
shells, the Reddy Liu theory slightly over-estimates the fundamental natural rre4uencies
when compared to the present theory. In the case of the moderately thick antisymmctric
cross-ply cylindrical shells, it is the opposite. For a thin cross-ply shell, Reddy and Liu
(llJX5) and the present results arc identical. Results from the shear deformation theory arc
obtained by Reddy (19X4a, b) with shear correction factors e4ual to 5/6.

Table 2. Non-dllllension;.lli/ed fundamental frequencies of crlhs-ply cylindrical shells

simply supported at the ends. "j = (wa'/II)"/I'!t:;·. a is the length of the shell. II Its thickness.
Each layer has an identical thickness. (SDT: shear deformation theory)

R/tJ Theory
(0/90 )

alII = too a/II = 10
(0 <)00 )

alII = 100 al" = 10
(0/90 ,<)U jO )

a/II = 100 aill = 10

5

10

20

50

100

Plate

ReddyLiu
Present
SDT

Reddy ·Liu
Present
SDT

Reddy·-Liu
Present
SOT

Reddy Liu
Present
SDT

Reddy Liu
Present
SDT

ReddyLiu
Present
SDT

16.690
Ih.70X
16.668

11.840
11.8-t8
II.H3l

10.270
10.273
10265

9.7830
9.7850
9.7S16

97120
97\30
9.7108

9.h8XO
9.6883
96873

9.0230
9.1060
X9082

8.9790
90257
8.8879

8.9720
9.0011
8.890()

8.9730
8.9913
88951

8.9750
8.98H9
8.8974

89760
8.9869
8899S

20.330
20.333
20.332

16.620
16.620
16.625

15.550
15.550
15.556

15.240
15.230
15.2.t.t

15.190
15.190
151n

15.170
15.174
15.183

II.X50
11.800
12207

11.800
11.75H
12173

11.790
I 1.7..X
12.166

11.790
11.7-t5
12163

11.790
11.7-t5
12163

11.790
11.745
12162

20.360
20..166
20.361

16.630
16.629
16.63-t

15.550
15.55U
15.559

15.23U
15.233
152-t5

15.190
15.187
15.199

15.170
15.172
15.18..

11.830
11.791
12.267

11.790
11.7-t9
12.236

11.780
11.739
12.230

l1.7S0
11.736
12.22X

11.780
11.735
12.227

II./SO
11.735
12226
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Table 3. Free 'lbration analysis of simply-supported laUbe ends) circular cylindrical isotropic shells. Comparison
of !c''''est natural frequency parameters (il = (wh rr)" p G where G is the shear modulus. v = 0.3 the Poisson ratio
and fL'r i. i.~R = mrrR (1 = 4rr. R IS the mean radius of the cylinder. <l its length and m an integer (SOT: shear

deformation theory)

bact-3D
Present
Bhimaraddl
SOT
Flligge

[""'1-3D
Prescnt
Hhullar~lddl

srn
Fltigge

h R = 0.06 h R 0.10

n=1 n=~ n=3 n=4 n=1 n =.; n = 1 n=4

O.01'o}'.1 o.o~r: 4.~ 0.08933 0.09199 0.2052'.1 0.20802 0.:'1:'61 0.:'1906
(JOS635 00S-45 008931 0.09:'00 0.:'0458 0.:'0733 0.:'119:' 0.21839
o ox03'.1 0.08~:'S 0.08911 009175 0:'0478 0.:'0678 0.:'113:' 0:'1771
001'011 0.ml7l8 0.08'.10:' 0.09165 0.:'0300 0:'06:'8 0.:'1077 0:'1710
00'.1161 0.()<I2<l0 0.0'.1510 0.0'.1824 0236:'3 0:'3995 0.246:'0 025502

h R = Ol:' h R 018

fI=1 n=2 n=3 n=4 n=1 n=2 n=3 n=4

0.27491 0.:'784<l 0.:'8447 0.29287 0.50338 0.50'.137 0.51934 0.533:'5
0:'7.\1'd 0:'77:'1 0:'XJ21 0.29161 0.5000:' 0.50006 051010 0.5300X
0.:'7:'Xo 0:'7041 O:,s:'JJ 0.29064 0.49X 18 050418 (J.5141!> 0.52801'
0.27197 0.:'7547 O.:'SI31 0.:'8951 0.4947<) 050058 0.510:'1 052366
IU:'%O o.13r9 OJ4349 OJ5571 067100 061'056 O./i'l634 0.71803

Tabk 3contains non-dimensionali7ed natural frequelKies for isotropk short cylindrical
shells using various theories: three-dimensional elasticity. Arrnenakas et al. (1969) ; present
theory; Bhimaraddi theory. Bhimaraddi (19X4); shear deformation theory with a shear
correction factor equal to n: z·12. Mirsky and Hermann (1957): and Fli.igge theory. Flligge
(I%(). In Table J we have nnly retained the most significant prohlem from the Bhimaraddi
papcr (llJX4), i.c. ;. = flinN/II = IV.", = 4n:. wIH.:re R is the radius of the cylindrical shell
and II the length. Comparisons of the ahove theories show that the maximum error in the
present analysis is ahollt - ().6u~•• in Ihe Bhimaraddi results it is about I%. in the shear
deformation theory it is ahout -I.X'Y.., anti in the Fliigge theory it is about +35%; for
i. ::= 4n. n "" 4, hi R = 0.1 X. For lower values of i. the present theory also gives good results
for the lirst circumferential mode (II = I) anti ;. = O.5n:. ;r; and for II = 1,2,3, 4 when
. _ ")

i'. - _n:o

5.3. Fillile dell/ellt l/pproximlltiolls
The kinematics detined by eqn (X) have been used to build a C I finite element for

shallow shells which has been implemenled in a stantlard computer codc. From numerical
tests. it seems necessary to c'lrefully choose between (iill or .,.;: = W"tI'X1l+(lJ/1 in order to
interpolate the shear in eqn (8). For shalIow shells which arc the aim of the present paper.
the element still'ness matrix is computed using eqn (15). and eqns (25)-(30). So. from eqns
(3()). aml sineef(~) = hln: sin (r:~/h). it is evident that all integrals arc analytically ecaluated
kecpilly thc sillc jllllctioll intact (i.e. withollt any polynomial approximations). Then. the
sine model is always in competition with third-order shear deformation theories. The
element has been found to be very accurate for evaluating stress distributions. An option
for multilayered shallow shells allows having exact interface continuity between layers for
displacements .lOd transverse shear stresses (Bcakou. 1991). In the midsurface. the classic
numerical integration rules are used.

6. CONCLUDING REMARKS

A new refined shear deformation theory is presented for laminated shells, restricted to
those for which thickness to radius of the curvature ratio is small compared to unity. in
order to prove numerically the efficiency of a nell' kinematics for shells through standard
prohlems. The reduction of the three-dimensional problem to a bidimensional one is
accomplished assuming a displacement lic1d containing a sine function associated to the
shear. This displacement field has a three-dimensional justification for plates. The theory
accounts for cosinusoidal variation of transverse shear strains according to thickness while
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no shear correction factors are needed. and for the same generalized displacements as In

the shear-deformation theory. the boundary conditions upon the top and bottom surfaces
of the shallow shell being exactly satisfied. A variationally consistent derivation of the
boundary value problem (interior equations and edge conditions) is presented and numerical
results for standard problems have shown the accuracy of the model.

The contact problem between layers of multilayered structun:s can be solved as. for
instance. in Dl Sciuva (1987). It is also possible to take into account the transverse normal
stress for signifkant problems such as hygrothermal stresses in composite structures. sand·
wich structures of which the core rigidity is small compared to those of the skins. For this.
to have only five generalized displacements. we suggest adding the (II 1[)fp'; and 1/:(;';
e,'\;pressions to the C1 component of the displacement and to constrain functions c/i and
(i'; in order to satisfy the boundary conditions concerning the transverse normal stress.

Tilt: adwl/t(/qe oj" fhe present theory is in ifs .>implicitl'. accuracy. no higher-order
derivatives and material dependency of the kinematics which will allow extending the model
to any nonlinear behaviour (geometric and material).

REFERENCES

Arrm:nakas, t\. E.. Ga7js. D. ami Ilermann. G. (1969). Free Vihratiml 0( Circular C\'lmdrical SlIdl..·, Pergamon
Press.O,foru.

Bcakou, t\. ([ 991 I. f1omogeni7.ation and modeling of muttilayered composite sht.:lls. Thesis. ENSAM·P'lris.
France (in French).

Bert. C W, (19;':0). Analysis and Performance of Composites (Edited by L. 1. Broutman), Wiley & Sllns. New
York.

Ikrl, C. W. and Fr;uH.:is, P. II. (1'I7~) Composite material mechanics: ,tructural mechanics. AU·' Jf IZ.
lIn JISI,.

f1hill1;lr;lddi.:\, ()')X4). A higha·order theory for free vihrati"n ;In;lIysis Ofcllcubr cylindric;t! sheik 1,,1.1. Solllll
Siruclurn Ztll71. Il~J (dO.

(·heng. S. (1'>77). t\ IlIclhod for solving houndary value rrohlclll ;Illd two-L!lllIensHlll;1! theones without ;1.1 hoc
;ISSlllllptlons. J. UlIslwlly 7(.1), .12') .1.15.

Cheng. S (1'J7'!). rlaslicity theory of plates and a n.:lined theory. 1. AflfI/. Jl,',h "'6. M~ 65lJ
[)i SCIlI\;I, M (II)SII) Bending. vihr;llion and hm:kling ufsilllply supported thick llIultliayen:d orthulropic pLtlt:s

;tll cv;t!uallon 1,1" a new lllspbcemellt modcl. J. Sount! Vi", 1O~(.11. 425 442.
[)i S\.·illva. ,\1, {)')1'\7). An improved shear·del"mnatioll theory for lIJoderately thll:k multllaycred ;lIlisotroplc shells

and pLlks. 1. Al'f'/' JI•. ,-h. ~. 5~N 5911.
[)ung. (i [I. ;lIld Tso. l-". K. W (1972) On a laminated Urlhotropic shell theory indudlllg tr;lIlSVerSe shear

del"orllla!lon,1. ,·'I'f,l. .\fcch. .W. 10')1 1097.
D'lllllt:11. L. II. (['1.13). Slahility Ilrthin·walhl tuneS under torsion. NACA Repurt ~71)

Duxsee. L. L. ( I ')X')). A higher-order lheory 01" hygrolherm,t1 oeh'l vim 01" Iamlnaled com[1usite shells. ffll. 1. :·;ohd.·
.\'fru("ll/r".~ Z5HI, JV) 355.

l'liigge, W. (1960). Slre.I.I,'.•· 11/ .";h"'I.". Springer. Berlin.
Gamain. P, (19X6), ,\I'" ClJII i/{l/c , Ellipses. Paris,
Goldcmei/er. A. L. (1')63) Derivalion uf an approximate theory of shdls hy means oLISymptolic integratioll of

lhe equations or the theory 01" elasticity. J. Appl. Mallr. Af('ch. 27, 59) 60X,

Greenspon. J. E. (1960). Vibratillns or a thid.-walled cylindrical shell. COll1r,trlSOl1 or the eX;lct theory wah
aprrlnil11,tte thcone.s. J ACIIII.\I. ,\'oc ..111/. 32(5}, 571-578.

Koiter. W T. (1')5')) A consistent first ;Irproximation in the generaltheury of thm elasllc shells. l'rnccl'tlinys oI
Ih" Symposil/m Oil fhl' 1'11('",\' or Tllill Ell/.Hit' Sir"'!.... Delft. 2~ -2X.

Langh;tar. II. L. ;tnd Boresi. A. P. (1958). Pro("l't'dillq.\· OIlht' Tlrird U.S. NUllolTul COlIl/r,...... o/..Ipplit'd MCClrl/llIc.\·,
ASME, New Yllrk.

Levinson. M. /I<)XO). An accurate simple theory of the st;ttics and uynamil:s of clastic plales. Mall. Re.... COII/1I1.
7,34J J50,

Love. A. E. II (1927). 1'r('IIII:.·(' 1m 11r" MllllwflllIfical TII,'ory "IEla,Hicil)" (4lh Edn). Dover, New York.
Mirsky. ( alld Il<:rl11;llIlI. G. (I ')57), Nona,l\lally symmetric motions of cylinJnc,d shells. J . ..10m... /. Soe ..1111. 29.

1116 112-1
:\lurlcy. L. S D. (1959). An improvement on Donnell"s arproximation for thin-waIled Circular cylinders. QI 1.

.\1",.11. "/1'1'1. Jlafh. 'Z.;':'1 99.
Naghdi. P, M. (1957). On the theory of thin clastic shells. Q. Aprl.....fallr. ' .... 369 JKO.
N;Lghdi. P ~1. (1971). [n FII,.'Il/t'·... Ilwullllldr da PhyJik (Edited by C. Truesdell) (2nd Eun). Vol VI/~ The theory

of shells anu rlates. Srringer. Berlin, pp. 425-640.
NLl\Olhilov. V. V. (1964). Thin Sht'll Thl'lIr\, (2nd Edn). Noordhoff. The Netherlands.
Pagano. :--.:. J. (1970). Exact solulions for 'rectangular bidirectional comrositcs and sand ..... ich plates. J. Comp,

.\faICf. 4. ~O·}~.

Pcgoraro. P. (199~), Environmental effects on the behaviour of composite structures. Thesis. University of Pans
VI, Franl:L: (in French).

Reddy. J. N. (I 'll\4a) E.\act solutions of moderately thick laminated shells. 1. Enqn.1/ Jfech. 110(5). 794-801).
Reddy, J. N. (19l\~h). A simple higher-oruer theory for laminated composite plates. J ..11'[11. .Ht'ch. 5'(~).

7~575~.



A refined theory of laminated shallow shells 1415

Reddy. J. N. (1990). A review of refined theories of laminated plates. Shock and Vlhralion D(qe.rl 22( 7). J..-17.
Reddy. J. N. and Liu. C. F. (1985). A higher-order shear deformation theory of laminated elastic shells. Inl. J.

Engnq Sci. 23(3). 319-330
Reissner. E. (195~). Stress ·strain relations in the theory of thin elastic shells. J..Hath. Phs. 31, 109··119.
Sanders. J. L. (1959). An improved first-approximation theory for thin shells. NASA Technic-d1 Report R-24.
Stein. M. (1986). Nonlinear theory for plates and shells including the effects of transverse shearing. AIAA JI

24(9).1537-1544.
Touratier. M. (1980). Propagation des ondes elastiques dans les tiges rt'Ctangulaires composites renforcees de

fibres unidirectionnelles. Int. J. Engnq Sci. 18.931-946.
Touratier. M. (1987). A dynamical theory of inhomogeneous slender structures and its applications. In Refined

Dynamical Theories of Beams. Plales. Sht'ils and Their App/iwlions (Edited by I. Elishakoff and H. Irretier).
Lecture Notes in Engineering 28. pp. 333-347 Springer. Berlin.

Touratier. M. (1989). Un modele simple et etlicace en m':':anique des structures composites. C.R. Awd. Sci. Paris.
1.309. seric II. 933-938 (with an Abridged English Version).

Whitney. J. M. and Sun. C. T. (1974). A relined theory for laminated anisotropic cylindrical shells. 1. Appl..Hech.
41(2).471-476.

Widera. G. E. O. and Logan. D. L. (1980). Retincd theories for nonhomogeneous anisotropic cylindrical shells:
Part l-derivation. J. En"n" .Ht'ch. Oil'. 106. 1053 ·1074.

APPENDIX: COMPONENTS OF THE SYMMETRIC MATRIX L

.' ., ( 2 I).L II = -AII ..·.;,-A ••A~+ I"+R;/I+ R;I; W·.

L (
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(
All A" A::) .... ._ ...• +2 ... + . +(A~.l.+A~/.+/II)/Ir
Ri I<,R, 1<; - •
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l
}." j, .. I\.W

L" = -i5I1A.~-i5••;.;;-J,,+J:w', L" = -(/),,+13•• );.•).

L" = -13::;.;;-13••;.~-J,,+J,w'.
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