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Abstract —A new refined but simple shear deformation theory of elastic shells is developed for shells
laminated of orthotropic layers. To evaluate the new displacement field assumed which s justified
in plates from the three-dimensional clasticity theory. classic types of shallow shells are considered.
The boundary value problem is formulated by making use of the principle of virtual power in
conjunction with the assumed consistent displacement field. The theory accounts tor costne dis-
tribution of the transverse shear stratns through thickness of the shell and tangential stress-frec
boundary condittons on the boundary surfaces of the shell. The theory also accounts for in-plane
inertia and rotatory inertia. The Navier type exact solutions are presented instatics and in vibrations
tor cylindnical and spherical shells under simply supported edge boundary conditions. The theory
15 of the same order of complexity as the shear deformation theory but is very much more eflicient
without needing shear correction factors. Some numerical comparsons with other works are made.

1. INTRODUCTION

The more general structural elements are any curved structures which extend continuously
to a much greater extent in two dimensions (1.¢. on a curved surtace) than in the third
dimension (i.e. the thickness direction). The structural clements are very uselful in engin-
eering design, especially for the sizing of structures and for deceloping finite elements. A
shell may have any of a great variety of gecometric conligurations. Practical shell structures
often have various kinds of discontinuitics, such as holes, bosses, changes in thickness and
stiffeners. Usually, composite-material shells are laminates of many plies or layers.

Because of difficulties involved in deriving two-dimensional theories of shells from
three-dimenstonal equations of elasticity, assumptions of one kind or another must be
introduced in the derivation. So, approximite bidimensional lincar theories for shells have
been developed by making use of an assumed displacement ficld in powers of the thickness
coordinate and a variational theorem. An integration with respect to the thickness coor-
dinate supplies the governing differential equations and consistent boundary conditions in
terms of unknown generalized coordinates which are independent of the thickness coor-
dinate. An asymptotic integration ol the elasticity equations has been employed tor isotropic
shells, Goldenveizer (1963) and for nonhomogeneous shells Widera and Logan (1980). To
derive two-dimensional theories from three-dimensional equations, a method has been
presented by Cheng (1977) by expanding solutions in Taylor serics.

Surveys of various classical shell theories can be found in the works of Naghdi (1971),
Bert and Francis {1974) and Bert (1980). Classical shell theories were developed originally
for thin elastic shells, based on the Kirchhofl - Love plate’s assumptions and various degrees
of approximation on the curvatures, except the Langhaar and Boresi (1958) theory which
is exact in terms of the Kirchhoff-Love hypothesis. Thesce classical shell theories are those
of Donnell (1933), Morley (1959), Love's first approximation, Love (1927), Sanders (1959),
Novozhilov (1964), Love's second approximation, and Fligge (1960). For a more detailed
discussion of these various shell theories, the reader is referred to Naghdi (1971).

From Kotter (1939), refinements to Love's first approximation theory of thin elastic
shells are not suflicient, except if the effects of transverse shear and normal stresses are
taken into account in the refined theory. Then. the transverse normal stress s of the order:
thickness to radius of curvature ratio times the bending stresses, whereas the transverse
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shear stresses deduced from equilibrium equations are of the order: thickness to length
along the side of the shell times the bending stresses, Reddy and Liu (1985),

The etfocts of transverse shear and normal stresses in shells were considered by Reissner
(1932) tor shells of revolution, Naghdi (1937) to arbitrarily doubly curved shells and Dong
and Tso (1972 A very good synthests in dvnamics has been made by Greenspon (1960)
tor homogencous shells.

Higher-order shell theories in which a displacement field of polynomual form. a degree
greater than one is assumed. have been developed for cylindrical shells by Whitney and Sun
{1974) and by Bhimaraddi (1984). for doublyv curved shallow shells by Reddy and Liu
(1983). and for general shells by Doxsee (1989) for the purpose of removing the inaccuracies
in the laminated shells of the shear deformation theory which accounts only for constant
transverse shear stresses through thickness. In addition, the shear correction fuctors which
the shear deformation theory needs. are not consistent.

In this paper. g new (vpe of approach is proposed for developing a simple and refined
shear-deformation theory for moderately thick laminated shells. The theory contains the
same independent generalized displacements as in the shear deformation theory, and is
based on a new assumed displacement field in which the shear is represented by a sine
function. This means is justified from a three-dimensional point of view in plates and allows
us to have a cosine distribution of transverse shear stresses through the thickness of the
shell. Also, unlike some of the shear deformation theories, the present analysis does not
involve the determination of any unknown shear coefficients. The model is evaluated by
comparing the results obtained from it, as well as from shear deformation theory Reddy
(1984a), and higher-order shear deformation theories (Reddy and Liu, 1985 Bhimaraddi,
1984), with, when possible, the (unfortunately rare) exact three-dimensional results,
Numerical results are obtained for laminated spherical domes, laminated and isotropic
short cylindrical shells in static states and in vibration. The objective of this research is to
develop ellicient (e, simple and accurate) tools tor the design and the sizing of structures,
in lincar and nonlincar behaviour, and if necessary for structures made of composite
muatertals, So, a finite clement approximation may be constructed using an eflicient theor-
ctical model.

20 THE NEW BASIC TWO-DIMENSIONAL MODEL

I previous warks on stenctural mechanios, and warve propagation in bars and beams, it
has been suggested that trigonometric functions be used in the kinematics {Touratier,
1980, 1987} in place of polynomial developments of the transverse coordinates. Recently
{Touraticr, 1989), 1t was proposed that this idea be extended to the plate theory. Some
numerical results for : a simply-supported laminated plate under a doubly sinusoidal normal
static pressure ; a simply-supported sandwich plate under a uniform normal static pressure ;
fundamental, free vibration mode of a simply-supported sandwich square plate, have been
carricd out in comparison with three-dimensional exact sotutions. The comparisons have
shown the efhiciency of the proposed maodel through the accuracy of the numerical results
and the simplicity of the theory. A similar approuch was used by Stein (1986) for plates,
sce the review article by Reddy (1990).

To explain the basic model, we start with plates under o normal loading such as
pressure, concentrated load for instance. Let us consider a body occupying the domain

Q= Ax[~h2<g:<h2]

in a Cartestan coordinate system (x,, X, x, = z), with A as an arbitrary region in the
{x,..x;) plane, and with diameter () > A, the thickness of the body Q. To have only the
five classic independent generalized displacements. to immediately satisfy zero transverse
shear stress conditions on the top and bottom surfaces of the plate, and to have a higher
order and simple kinematic, we propose to write the variation of displacements (U,. Uy, U3)
through the thickness of the plate in the following form:



A refined theory of laminated shallow shells 1403

Uoxioxauz ) = (00 X0, ) — 2w (X X ) + (i) sin (s A)yD (L xsu 0)

1y

Us(ep sy =wixnx. ), x=1 or 2, w,=cCwix,. (H

where 1 is time, (u,. w) are the displacements of a point in the middle of plane 4 and 7! are
the transverse shear strains at - = 0. The displacement field (1) implies that the transverse
shear strains are zero on surfaces - = +h 2, and are functions of the even kind of the
thickness coordinate =, which is consistent. Because the sine function has an infinite radius
of convergence. from eqn (1) we can write the in-plane displacements

U Ly 2 (“-’)2“1 0 .
L= U —IW - — | — w ope.
or, Qe+ D)\ A ! p
2 4 6
- n r® .
- e O B 23,0 =Syt - Ri
L,—ll, -“.x+-/x 3!/13- 11+5!l14~ (R 7!hh" 1x+ . (-)
Since 3, = w,+w, where w, are the rotations at = = 0 of normals to the midplane A with

respect to the x, axes, we note:

(1) if 77 = 0 we obtain the Kirchholtf-Love theory,

(2) 1f we develop the first order sine function. we obtain the Mindlin theory,

(3) if we develop the sine function to the third order only, then the in-plane kinematic
(2) s

1.0
R : ..‘ _+__ -
6h>" !

. e )
L'x =AU, =W I

which is of the same order as the Levinson (1980) and Reddy (1984b) kinematic. In fact,
the Levinson and Reddy in-plane kinematics is given by

U, =u, -zl w —4 - :(u) —w )| =u —zw el + o bl
x x - 1 3 /1 x . 2 ~ -7 3[[_‘- I

[n the Stein theory, eqn (1) is taken under the following torm [which is not equivalent to
eqn (1)):

Sl 4sin -t
h’ h

U,=u,+

U, = w+cos ;,I: W
1

So, with the Stein theory, boundary conditions are not satisfied for the shear stresses on
the top and bottom surfaces of the plate, and the theory involves cight independent
generalized displacements.

To develop our theory, we will, of course, keep the sine function intact. In fact, the
kinematic proposed in (1) can be justified from the three-dimensional point of view by using
the excellent work of Cheng (1979). Cheng has presented a method for the solution of
three-dimensional elasticity equations for the problem of thick plates. Through this method
three governing differential equations, the well-known biharmonic equation V:Viw = —¢/D
(V? is the Laplacian, D the bending rigidity and ¢ is the transverse load). a shear equation
(VI =Qp+1)*n*h*)s(x,.x.) =0 (s is a shear function) and a transcendental equation
(V)1 =sin (WV)AVYH (x,, x5) = 0 (H is a stress function) are deduced directly and sys-
tematically from Navier's equations. Only the third equation involves a transverse normal
stress without shear, but the solution contains higher-order derivatives. The second equation
is called the shear equation because its solution is related to the pure shear deformation in
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the bending of thick plates. So. from Cheng (19791, the solution of the sheuar equation i

such that - =sint2p=hzaz iy 0 U= —sint2p+ Dz iy, and =0, Henee the
shear in our theory can be deduced from the above solution by imposing p = 0 and also
th =)y =5 Gt = — v seqn (3). Then, the modelling of the shear in (1) is consistent.

In addition, keepiny funcuons o) ineyn (1) allows us to find the Mindlin's theory by
developing the sine of the irst order and to fuctlitate a finite element approximation. Other
terms in {1y are membrane displacements with w,, and Kirchhofl- Love bending w which s
equivalent to the first term of the asymptotic expansion in the three-dimensional clasticity
equattons, The bending beam kinemutics in plane (xv,. v.) can be deduced from (1) by
imposing «, = Uand -7 = 0. and w being tunction ot v. and time.

Now we are going to build the shell model tollowing a procedure similar to that
presented above for plates. A shell of constant thickness f1s considered, and the points of
the shell and its boundary are denoted by Qund T'Lorespectively. The boundary of the shell
is the union of the upper surtace Tpe . the tower surface U and the edge faces [
The setof pomts ving haltway between the upper and lower surfuces s called the midsurface
and 18 denoted by . The outward unit vector normal to T is denoted nand the intersection
of 4 and T.... 15 denoted 7. [ order to obtain numerical solutions to the governing
equations that we are to derive, 1t is necessary to express the equattions in component form,
Let (4,00, D) denote the orthogonal principal-curvilinear coordinates (or shell coordmates)
such thut the - and J-curves ure lines of curvature on the midsurface J = 0, J-curves are
strarght lines perpendicular to the surface ¢ = 0. The values of the principal radn of
curvature of the muddle surface are denoted by Ry and R Then, curves of constant x,
comcide with curves of prineipal curvature 1 R, of the midsurtuce, and curves of constant
veocomeide with curves of principal curvature 1 R, The distance dyv between points

p =S dn0rand ptos 0 pdd L 20 RdS L)) on the mudsurtace 1s determined by

(dy’ - xday F s (4)
where 2, and x. are the sarface metries such that
¥ = ((pcdHep cd). =1 or 2 (3)

In this expression, pd,. 2,00 i a pomnt ot the surfuce o of the shell, 2, and 2, are scalars
which are Functions of position (2, Z,,0) on the midsurtace. The four quantities %, 2., R,
R, define the shape ol the shelt and are not independent. The distance S8 between points

P=(l. I 0and P =0, +d], 0 +di. J+d) out of the mudsurface ts given by
(WS = LHdE )y + LidZ 0 + Lidsy? {6)

where £, Loand L are the Lamg coctlicients,

Lo=x01 ’) L= 14 ")_ Lo=1. 7
| “(*R, : "(*Rg, 7

b

So, the point p ot the midsurfirce closest to P s related to Pvia P o= p+Jn'(p) where J s
the distance between points p and P.and n'(p) is the unit vector normal to the midsurface
at p. Then the displacement ficld is taken under the tollowing form, from considerations
regarding the above plate model :

- L, . oy . o=l . .
Cptd i lon = T Sen T Enn+ _sin TR S0
x, " 14 /1
L—;.i(\,:!‘:_‘~:vl} =S, a0 ‘T'./,-{\_;h»,::.” = & (.:\_:‘r;. = [ or 2. (¥}

Ineqns (). (O, O, Oy are the displacements along the (2, 2.0 0) coordinates: (7, ;. W)
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are the displacements of a point on the middle surface and 7} and 79 are the shear strains
at ¢ = 0. This choice in eqn (8) 1s dictated by the same requirements as those in piates so
as to have an efficient model (i.e. simplicity and accuracy of the model), only five independent
generalized displacements, higher-order shear deformation to avoid shear correction
factors, and zero transverse shear stress on the upper and lower surfaces of the shell. [n
fact. for general shells. shear strains are defined by [see Doxsee (1989)] :

=B (LE0_0)

by = .
: S A
' L[; 1“ 4 w Rﬁ Cy

With the present theory. from eqn (8) we have

| u Y h ng u 1 ng

~. - i - - . S -0 B - S -0

by = W — + - W, — —— Sin 4-’- + — = — “1 +CcoSs _-,; )
Xy ! R“ Ay R“ # TIR}; h “ Rﬂ Ay s h #

For shallow shells for which 'R « 1, the preceding shear strains become
g

26y- = COS ?

o0
-

Then, zero shear-stress conditions on the upper and lower surfaces of shallow shells are
well satistied, provided the shell material is not more than monoclinic.

3TWO-DIMENSIONAL BOUNDARY VALUE PROBLEM FOR SHELLS

In this section a simple and refined theory of composite shells is developed. The shell
considered has a uniform thickness which is much smaller than the shell’s radii of curva-
ture. The shell may be composed of a single material or several different materials bonded
together in layers, cach layer having a constant thickness. Each layer may be isotropic
or orthotropic. The material propertics are assumed to be lincarly elastic. A consistent
combination of displacements (essential boundary conditions), forces and moments (natu-
ral boundary conditions) are specified along the edges of the shell. The displacement of
cach point of the shell is taken to be small compared to the thickness.

The following problem is addressed : given the initial geometry of the shell, its material
properties, the prescribed edge torces and displacements ; the displacements and stresses at
every point of the shell are required. The equilibrium equations and boundary conditions
are derived via the principle of virtual power, Germain (1986). Let Q be a shell with tractions
F prescribed along part of its boundary I', < Iy, and displacements prescribed along the
other part [, © [,.. where the symbol < represents a subset. The upper and lower surfaces
of the shell are tuken to be traction free.

To use the principle of virtual power to derive equilibrium equations and boundary
conditions, we start by defining two spaces # and # such that (f = 1 or 2):

_ L Oy L - DR
U = {U,, = 1" - : Yl Oy = v (g7 e H'(A) x HY(A),

I3 I
we H(A), iy 7y and w and iy, specified on T, < Ty,
. - . _h .l
(essential boundary conditions), f({) = ~ sin i 9)

7

= Ly . i ey s 2, s 2
{ o= i — E s O =t g e HY () x HY(A),
! #

. - h . nf
weH(A). Uiszeroon I, @ Tggee. f(0) = _sin T%} (10)
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where H*(4) is a Sobolev space.

The space # is the space of admissible displacements £ defined in eqns (8) and the
space # is the space of virtual velocities ' which must be considered at a fixed time. The
principle of virtual power states that: find (i,., ¥}) € # such that for every(i,, w.50) e 4,
then we have (summationoniand; = [.2.3):

plCdr = ..j a,,zitdw] fi’dwj FC da. (1)
i i) ie T,
To simplify, we shall write {11) in the corresponding form ;
P = Pr PP, vled (11a)

where .2, is the virtual power of the inertial forces, # the virtual power of the internal forces
due to stresses, .2, the virtual power of the volume forces and .2 the virtual power of the
external contact forces.

Inegn (11) o is the stress tensor, D the virtual strain rate tensor. ¢ the mass density,
U the au.t.kmtkm vector (= &0 ¢06%), and [ the body forces. Virtual velocity measures,
i, w7 have been defined by egn (10). The tensor £ is defined by Doxsee (1989)

~

D=4 C+V0)., V=(1=Ib 'V m*@‘; (12)

where the superscript T denotes the transpose, V the gradient operator on three-dimensional
space, V the gradient operator on the midsurtace, | the identity tensor on the midsurface,

= —Va' the curvature tensor of the midsurfice, n” the unit vector normal to the midsurface
at p and @ is the tensor product operator.

To obtain numertcal results and to evaluate the theory without any other approxi-
mation such as finite clement approximation of eqn (93 to eyn (1), we restrict the theory
to shells such as AR, « | and with constant radius of curvature, Then, from (12) and (10)
the virtual strain rates are in curvilinear coordinates {(no summation on i = | or 2):

. E 5 W
m; i
Dy = —tigy— (, +/(0) P 4

3‘;1 Ay R,
- I N l - \“:‘q% };? + 'jg
2 2 v e e i2 ME
2Dg: =y + Uy "5 +j (‘,) R ol
A Xy I A Ly 2,
3 30
2Dy = f: Ve (13)

By combining eyns (9) - (13), integrating eqn (1) {therefore (11{a)] through the thickness,
and performing other algebraic manipulations, one obtains for the terms in (1a):

- : ] = l 1 . l .
P, = I+ I VS TR Y O I J K g, d
‘ J Z {( TR T R >*’ 1 ( TR, "-)“"’*‘( "R, )’}‘ ¢
: I - 1= K 2 oL zo
+ }: Ji+ R Ky — wyu+Jary vy da
A it # 2y
.
| | I . K
+J {L,mt + Y [—- = (1, + -1 )u,,-&- TWy— ,,,‘Jum}da (14
4 4o Ly Rﬁ / Ig Ay
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- Py

-
- <

p = —f ¥ N.,,,‘ﬂda—f Y N,,,,—"Lda+f Y M, dg
q x 1 R ; '

=1 8 g1 8 4 Br=1 1.2y
T8 .
’j 3 M‘,./.ﬂda—J Y Oyiida (15)
A4 Byl 2p A=
2 =J < Y {putty + i }+q¢'> da (16)
4 g=1
P = J < Y {Tﬂ,i,,+cﬂf;;;-—Mrﬁ'"+r‘.;i->ds. (17)
2

The new terms appearing in these equations are automatically defined as below (n = 0.1.2
and f=1,2):

+h 2 +h 2 +h2
I, = J pgtds. Jy = f pfMO)dS. K= f pe Q) dC. (18)
2 hi 2 M

—h “hi -

In egns (14), (15) and (16). the integrals are surface integrals over 4 and in eqn {17), the
integral is a line integral along the intersection of T and T,, which is denoted 4. Also
appearnng in eqn (15) are the stress resultants

w2 +h2
N, = j oadl. M, = J Loy dl
A2

hl

vh 2 vhil
fﬁ,/f = J ba f(;)“-,-ﬂ dg, Q-,vc = J ba /i;“;c dg (19)
where yand f# =1 or 2. In eqn (19), N, are the membrane generalized stresses, M, the
first flexion and torsion generalized stresses, A7I.,,, the higher-order flexion and torsion
generalized stresses, Qi.; the higher-order transverse shear generalized stresses. The body
force resultants are defined in eqn (16) from the definition of the virtual power of volume
forces 2, = [,f U dv and taking into account (10) to define the virtual velocity U. The
prescribed traction resultants in eqn (17) are defined using the definition of the virtual
power of surface forces 2. =Ir,FU da and the definition of the virtual velocity in eqn (10).
Finally, in eqn (17), W, is the normal derivative along the curve €, Ty and T are forces
prescribed along the edge of the shell, Cy and M, are moments prescribed along the edge
of the shell. In eqn (16), ¢ is the classic normal transverse charge to the shell, p; and riyy are
respectively surface forees and moments applied inside A.
Now it is sufficient to apply the principle of virtual power to obtain the formulation
of the boundary value problem. Then, (11a) with eqns (14)-(17) and by making use of the
integration by parts, imply:

—for all (iiy, W, $5)€ %, the equilibrium equations in the midsurfuce A of the shell Q:
2N,
ry =y ’-»i"# +ps B=1 or 2

v i

w) 2 A!l‘ﬂﬂ"' Nﬂﬂ
o=y (Mo T,
pi=1 N\ X%y Ry

ry=Y5 2% _ g4, B=1 or 2 (20)

|
W
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—for all (i, w5 ,. 7)) e #('4) < #. the natural boundary conditions at the edge % of
the midsurface 4 of the shell ©:

-Y Nyn+T, =0, f=1 or 2

e o (Mypnmp. & Myon,
how x: g %
E Mingn — M. =0
Ho= 1
- Y Myn+Cy=0, f=1 or 2. (2
H

The shear foru\ O - appear in the second equation (21) if the independent shear parameters
are &y = 7j —iiy: then, it is suflicient to add =2, @, to the sccond member of the
second equation in (21) and to replace T by o,

—from (9), nstead of the natural boundary conditions (21), we can preseribe the
displacemient on the edge of the shell | these are essential boundary conditions.

Then, for example, to study the giobal free edge effects and traction edge effects we need
natural boundary conditions (21). To take into account preseribed displucements, we must
use essential boundary conditions, In eqns (20) and (21) we have noted from (14) and

(1luw)

: : ad e /‘
5"’: = J }: ;'((CF;;{:’!;+J‘3?')(I£' = J (
3

g

T

= gy St P
{I;;":l,;* ;:’)}‘;;§+I“’w> {:—J i“”;u
-t

(22

In addition, in (21} mis the tangent unit vector to 4 and t is the curvilinear abscissa on %
Equations (20) and (21) are governing equations of the shell following lines of curvature
coordinates.
Finally, eqns (20,). (205), (21)), 21}, (21,) are those of the classical shell theory
eyns (20,) and (21,) are due to the shear deformation.

4. CONSTITUTIVE LAW. EXACT SOLUTIONS FOR CROSS-PLY LAMINATED SHELLS

Equations (20) are valid for any anisotropic and lincarly efastic materials. To have
exact solutions, materials must be restricted to the orthotropic (Reddy, 1984b). Thercfore,
the constitutive law for the Ath lamina is recognized as

t2
fad
fa

a, = Cuig: o =0, {

v

In equation (23}, because of the orlhotropic material, if {7 = 11,22.¢ lhcn kl=11,22.2
(with summation), and if i/ = 20, 1512 then &7 s respectively equal to 27, 10,12 without
summation. Other moduli G, are zero.

The hypothesis o = 0 (the normal transverse stress is neglected) is standard for
moderately thick structures and is justified. Dt Sciuva (1986). From (23) and the above
remarks the local constitutive law becomes
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g Cin Chin 0 0 0 €
022 Chz: Chn 0 0 0 €22
o p=| 0 0 Cuyx 0O 0 2 (24)
Gy 0 0 0 Coin 0 2,
02 0 0 0 0 Cian 2.,

where C o,y takes into account
G.. = 0: C;,ﬂ]; = Cﬂﬂﬂ b C,,::C;:[w/c;;::, no sum Ofm‘ ﬂ‘ C
In (24). the strains ¢, are computed in the same way as the virtual strain rates, but by using

the displacement field defined in (9). instead of the virtual velocity field. Then the strains
can be deduced from (13) by exchange of D into ¢ and by omitting the hat from «,. w and

30

P 5
From (24), of course, we have:

01§ &0 2 M2 = 05:(8,. 82 £R2.0) = 0.

So. we can write the global constitutive law from (19). (24) and (13) (considering the above
remarks). We obtain

—the global membrane constitutive law:

N =AV-BW+BY, (25)
~the global first bending and twisting constitutive law :

M = BV -DW+dY, (26)
~-the global higher-order bending and twisting constitutive law

M = BV —dw+ DY, (27
—the global transverse shear constitutive law:

Q = AT. (28)

In these global constitutive laws, we have put

Z
I

= {Ni Nop Niphs MU= (M, My, My}
{lqn.xﬁzz,f\'?n}'; QI’= {Q2C1Q|:}

~'
o
i

LD L T L
X7 2x3 €%
Y= { :

r S0 50
T = {:(:»u:‘- (29)

These global constitutive equations explain the equilibrium eqns (20) for moderately thick
laminated shells with orthotropic materials.
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D.d. D and A are defined by (28 = 11.22.12,66:

1410

The symmetric matrices A, B, B,
O = 44, 55

N eh 2 teh2 c oY
du=]  Cudln By=| Cudlr Buy=|  fOC,
.-k 4 onl v -h2
ek 2 PN
Du=| CCud dy=|  IFOC
J ol Joo 2
e 2 A
Bo=| rOCud: d,=]|  fiC.dl (30)
HE— h 2

o - o

The material coetlicients (7, are deduced from (24) by the following convention:

Chrnin — Cose = Ciyi Ciope = Coeoand Gy = Cop = Chs.

( xi"':

From (30) and (25) (29). we remark :

(1} the classical shell theory is deduced by taking () = 0.
(2) the first-order shear deformation shell theory is obtained when £({) = .

Exact solutions of the partial ditfferential egns (20) tnarbitrary domains and for general
boundury conditions is not possible. However, for simply-supported shells whose projection
in the Cartesian v v.-plane 5 a rectangle (spherically curved dome) we can solve these
cquations cxactly, provided the lamination scheme s of antisymumetric cross-ply or
symmetric cross-ply, orthotropic type. Exact solutions are also possible with cross-ply
evlindrical shells as with cross-ply cylindrically curved pancels. So, for a spherical dome,
the boundary conditions are assumed to be of the form:

a v, 0.0
wiv,, 0.0
Ny 000
Ma(v, 0,0
M, 0.0

mvL b =a0 e =ada =0

b = 0 L = wlaxa =0

It

Nos(vyu by = N (0, x,00) = NV (a,x, ) =0
.‘123(.\],/’,[) = .‘[”((),,\':.1) = A‘[H((l,.\':, [} = 0
Mo, by =M (0. x50 = M, (¢.x,.1) =0

LD =T b D) =0 0 = Tax., 1) =0 30
where ¢ and b denote the lengths along the v~ and x.-directions, respectively. In Cartesian
coordinates x,. we have from (4), dx, = 2, dZ,, i = 1,2, Following the Navier solution
procedure and for harmonic vibrations, we assume the tollowtng solution form that satisfies
the boundary conditions i eqn (31} and the equilibrium equations in egn (20) when the

external forees p, and couples m, are zero:

.

- - z = e o [N .

s, <) = Z U e ©OS £, 310 A, eXP (1w, 1)
met =

(3 dnn =Y G, sin A, cos 2,1, exp (i),,0)
et - |

.

W(, 3.0 = S W SIN 4, X, SIN A,X . eXp (1w, 1)
mgr -

Frdd -4 -4 ™1 .t . L N - M

TUELELn = Y T, cos A, sin A, exp (i, 1)
ma =

e s B T

SIS ) = z T i 4,0, cos £,x, exp (iw,,,0)
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X,
g(&1.800) = Y Qp SIN A%, SIN A,X5 €XP (i, 1) (32)
ma =}

where 4, = mnja, 4, = nn/b (m and n are integers). and where C),.. ... Q... are the ampli-
tudes: w,,, the frequency of harmonic vibrations. Substituting eqn (32} into eqn (20). we
obtain an algebraic systemin O ),..... ... forany integer mand n. Q,,, being a data:

(K™ —0;,M"™ Uy = Qo (33)
where

T ~ = i 7 2

bmn = { b’lm* L{mn' ”‘mn- r,i",- rmn;
e = 10.0.0,,.0.0} (34

and where K" and M™™ are (5x3) squared matrix. The symmetric matrix L™ =
K" —w;,M" is given in the Appendix. Equation (33) can be solved for U,,,. for each
mand n.

The solution is then given by eqn (32), using a finite number of terms in the series: if
the load ¢ is a doubly sinusoidal load. then only m = 1 and n = 1. i.e. U, is useful | if the
load is uniform, then we must retain sufficient terms in (32) to obtain the convergence of
the solution. For free vibration analysis, Q,.,, = 0 and egn (33) can be expressed as an
eigenvalue equation in ;. For static bending analysis. eqn (33) is solved with w,,, = 0.

For a cylindrical shell of x, axis, that is frecly supported along its curved edges, only
the boundary conditions based on &y, (0, vy, 0) W(a, vy, 0). Ny My ML T inegn (3D
need to be satisfied with (32) by taking 4,, = mnr/u, 4, = n/r where R is the radius of the
cylindrical shell, and so Ry = =, R, = R. For a cylindrical panel sunply supported on all
its edges, eqns (31) and (32) are valid, and it s suflicient to take Ry = wand R, = R

5. NUMERICAL RESULTS

The theory is evaluated through two sample problems. Numerical results from several
other problems obtained by Pegoraro (1992) in statics and by Béakou (1991) in
dynamics, confirm the trend observed from the following problems.

5.4 Problem 1 Simply-supported cruss-ply spherical dome under sinusoidal static load

The material propertics are: £ =25 Ey, Gy =035 Ep, Gy =02 Ep, v = 0.25,
where £is the Young modulus, G the shear modulus, v the Poisson ratio, L the longitudinal
fiber direction and T the transverse fiber direction. Table [ contains the non-dimensionalized
center deflection of various cross-ply shells under sinusoidal static load. Three lamination
schemes are tested : (0°/907), (07/907/0°) and (0°/90 /90°/0 ), to represent antisymmetric
and symmetric cross-ply lamination schemes, Layers are of equal thickness.

For moderately thick spherical domes under a sinusoidal transverse static load and
with a4 symmetric cross-ply lamination, the higher-order Reddy -Liu theory (Reddy and Liu
1985), underpredicts the central deflection when compared to the present theory (Table 1).
We note the present theory is the nearest to the three-dimensional solution (Pagano, 1970)
for plate under sinusoidal transverse load. For antisymmetric moderately thick cross-ply
spherical domes, the trend reverses. Results from the shear deformation theory are obtained
by Reddy (1984a.b) with a shear correction factor equal to 5:6. The maximum difference
between the present analysis and the Reddy-Liu theory is of the order of one per cent,
for moderately thick shells. For thin shells, quasi-identical results arc obtained both for
antisymmetric and symmetric laminations.

5.2. Problem 2 Free vibrations of simply-supported short cylindrical isotropic and laminated
shells

Table 2 shows the nondimensionalized fundamental frequencies of cross-ply short
cylindrical shells. The material properties and the lamination schemes are the same as those
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Table 1. Non-dimensionalized center deflections. w = (—w(a 2.a Dh'E; Q,,a*)10" of simply-
supported cross-ply taminated spherical domes under a sinusoidally distributed load (a b = 1,
R, =R.=R.Q, =100 SD). Each layer has an equal thickness. (SDT: shear deformation

theory)
(0 90 ) (0 90 0) (0 9 90 .0

Ra Theory aih =100 ah =10 ah =100 ah=10 ah=100 ah=10
Reddy-Liu 11937 11.166 1.0321 6.7688 10264 6.7865

s Present 11937 11142 1.0321 6.8168 1.02e4 68321
SDT [.1948  11.429 10337 64253 1.0279 63623
Reddy-Liu 35733 11896 24099 70325 24024 70836

10 Present 35733 11.868 24101 7.0864 24026 7.1029
SDT 35760 12123 24109 66247 24030 6.5595

Reddy -Liu 71270 12.094 36170 71016 Jetxy 74237

20 Present 71235 12.065 36137 71566 36137 7.1740
SOT 7.1270 12309 36150 6.6756 36104 6.609Y

Reddy- Liu 98692 12150 42071 7.1212 4.2071 7.1436

S0 Present 9.8689 12,121 4.2077 7.1765 4.2077 71970
SDT 98717  12.362 42027 6.6902 42015 6.6244
Reddy-Liu 10.444 12.158 43078 71240 43082 71464

100 Present 10.444 12,129 4.3081 7.1794 4.3088 7.1970
SDT 10.446 12.370 43026 6.6923 43021 6.62064

Reddy Liu 10.651 12,161 43420 7.1250 43430 71474

Plate Present 10.651 12.132 4.3427 7.1803 4.3436 71980
€ ExactaD — -~ 43470 7.3700 43850 74300
SDT 10.653 [2.373 4.3370 6.6939 43368 6.6280

uscd in the problem discussed above. For moderately thick symmetric cross-ply cylindrical
shells, the Reddy -Liu theory slightly over-estimates the fundamental natural frequencies
when compared to the present theory. In the case of the moderately thick antisymmetric
cross-ply cylindrical shells, it is the opposite. For a thin cross-ply shell, Reddy and Liu
(1985) and the present results are identical. Results from the shear deformation theory are
obtained by Reddy (1984a,b) with shear correction factors equal to 5/6.

Table 2. Non-dimensionalized fundamental frequencies of cross-ply  cylindrical shells
simply supported at the ends, 6 = (wa’/h)/ p/Ey, wis the length of the shell, A its thickness.
Each layer has an identical thickness. (SDT : shear deformation theory)

(0 /90 ) (0 90 0 (0790 ,90°/0)

R'u Theory ath = 100 a/h =10 ah =100 a/h =10 ah =100 uih =10
Reddy -Liu 16.690 9.0230 20.330 11.850 20.360 11.830
S Present 16.708 9.1060 20.333 11.800 20.366 11.791
sDT 16.66% 8.9082 20.332 12.207 20.36t 12.267
Reddy -Liu [1.840 8.9790 16.620 11.800 16.630 11.790
10 Present 11.848 9.0257 16.620 11.758 16.629 11.749
SDT 11.831 8.8879 16.625 12,173 16.634 12.236
Reddy-Liu 10.270 8.9720 15.550 11.790 15.550 11.780
20 Present 10.273 9.0011 15.550 [1.748 15.550 11.739
SDT 10.265 8.8900 15.556 12.166 15.559 12.230
Reddy Liu 9.7830  8.9730 15.240 11.790 15.230 11.780
50 Present 9.7850  8.9913 15.230 11.745 15.233 11.736
SDT 9.7816  8.8951 15.244 12.163 15.245 12.228
Reddy Liu 97120 8.9750 15.190 11.790 [5.190 11.780
100 Present 97130  8.9889 15.190 11.745 15,187 11.735
SDT 37108  R.8974 15193 12.163 15.199 12,227
Reddy -Liu 9.6880  8.9760 15.170 11.790 15.170 11.780
Plate Present 9.6883 89869 15.174 11.745 15.172 11.735

SDT 9.6873  8.8998 [S.183 12.162 15.184 12.226
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Table 3. Free vibration analysis of simply-supported {at the ends) circular cylindrical isotropic shells. Comparison

of lowest natural frequency parameters & = (wh nt) p G where G is the shear modulus. v = 0.3 the Poisson ratio

and for 2 = 4,,R = maR u = 4z, Ris the mean radius of the cylinder, ¢ its length and m an integer (SDT: shear
deformation theorv)

h R = 0.06 AR =010
=1 =2 n=73 n=4+4 n=1 n=2 n=3 n=4
Exact-3D 008639 0.08748  0.08933  0.09199 020529 0.20802  0.21261  0.21906
Present 0.08635  0.08745 008931  0.09200 0.20438 0.20733  0.21192 0.21839
Bhimaradd: DOK639 008728  0.08911  0.09175 020478 0.20678  0.20132  0.21771
SDT 0.08611  0.08718  0.08902  0.09165 0.20360  0.20628  0.21077  0.21710
Flagee 0.09161  0.09290  0.09510  0.09824 023623 0.23995 024620  0.25502
hR=0Q12 AR =018
n=1 no= n=13 n=d n=1 n=2 n=3 n=4d4
Exact-3D 0.27490 0 027849 028447 0.292%7 0.50138 050937 0.51934 0.53325
Present 627361 027720 028321 0.29161 §.530002 0350606 051610 0.53008
Bhimaraddi 0.27286 0.27641 0.28233 0.29064 049818 0.50418 051416 0.52808
sDT 027197 027347 028131 0.28951 0.49479 050058 0.51021  0.52366
Flugge 0.32060 033479 034339 035571 0.67100 068056  0.69634  0.71803

Table 3contains non-dimensionalized natural frequencies for isotropic short cylindrical
shells using various theories : three-dimensional elasticity, Armenakas ¢f af. (1969) ; present
theory ; Bhimaraddi theory, Bhimaraddi (1984) ; shear deformation theory with a shear
correction factor equal to 7712, Mirsky and Hermann (1957) ; and Fligge theory, Fligge
(1960). In Tuble 3 we have only retained the most significant problem from the Bhimaraddi
paper (1984, i, 4 = mnRia = Ri,, = 4n, where R s the radius of the cylindrical shell
and ¢ the length. Comparisons of the above theories show that the maximum crror in the
present anabysis s about = 0.6%, in the Bhimaraddi results it is about — 1%, the shear
deformation theory it s about = 1L.8%, and in the Fligge theory itis about +35%; for
r=dnaon =4, R = 018, For lower values of 4 the present theory also gives good results
for the first circumferential mode (= 1) and 4 =052, n; and for n =1,2,3,4 when
A=2n

5.3, Finite element approximations

The kinematics defined by eqn (8) have been used to build a C! finite element for
shallow shells which has been implemented in a standard computer code. From numerical
tests, it seems necessary to carefully choose between @y or 7y = W, /2, +dy in order to
interpolate the sheur in egn (8). For shallow shells which are the aim of the present paper,
the clement stiffness matrix is computed using egn (15). and eqns (25)-(30). So, from eqns
(30), and since f(5) = h/m sin (=), itis evident that all integrals are analytically evaluated
keeping the sine function intact (i.c. without any polynomial approximations). Then, the
sine model is always in competition with third-order shear deformation theories. The
clement has been found to be very accurate for evaluating stress distributions. An option
for multilayered shallow shells allows having exact interfice continuity between layers for
displacements and transverse shear stresses (Béakou, 1991). In the midsurface, the classic
numericitl integration rules are used.

6. CONCLUDING REMARKS

A new refined shear deformation theory is presented for laminated shells, restricted to
those for which thickness to radius of the curvature ratio is small compared to unity, in
order to prove numcrically the efficiency of a new kinematics for shells through standard
problems. The reduction of the three-dimensional problem to a bidimensional one is
accomplished assuming a displacement field containing a sinc function associated to the
shear. This displacement field has a three-dimensional justification for plates. The theory
accounts for cosinusoidal variation of transverse shear strains according to thickness while
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no shear correction factors are needed. and for the same generalized displacements as in
the shear-deformation theory, the boundary conditions upon the top and bottom surfaces
of the shallow shell being exactly satisfied. A variationally consistent derivation of the
boundary value problem (interior equations and edge conditions) ts presented and numerical
results for standurd problems have shown the accuracy of the model.

The contuact problem between layers of multilayered structures can be solved as. tor
instance, in Di Sciuva (1987). It is also possible to take into account the transverse normal
stress tor significant problems such as hygrothermal stresses in composite structures, sand-
wich structures of which the core rigidity is small compared to those of the skins. For this,
to have only five generalized displacements. we suggest adding the (h n) /.t and ff .34
expressions to the 'y component of the displacement and to constrain functions % and
3% in order to satisty the boundary conditions concerning the transverse normal stress.

The advantage of the present theory is in its simplicitv. accuracy. no higher-order
derivatives and material dependency of the kinematics which will allow extending the model
to any nonlineur behaviour (geometric and material).
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APPENDIX: COMPONENTS OF THE SYMMETRIC MATRIX L
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